咨询,就免费赠送域名与空间,咨询热线:18686868686当前位置: 全讯网 > 建站知识 > 网站建设知识 >
联系我们
电话咨询:18686868686
E-mail:admin@qxw.xzz56_com
地址: 河南省郑州市中原区郑上路82号(西四环立交)

7个Python特殊技巧,助力你的数据分析工作之路

作者/整理:全讯网 来源:互联网 2019-10-30

独享虚拟主机 新品上线,资源独享,建站优先!

黑客 代码 安全漏洞 程序员

声明:本文来自于微信公众号机器之心(ID:almosthuman2014),作者:Perter Nistrup,授权站长之家转载发布。

如何提升数据分析能力?Peter Nistrup 根据自身经验列出了 7 个有用工具。

本文列举了一些提升或加速日常数据分析工作的技巧,包括:

1. Pandas Profiling

2. 使用 Cufflinks 和 Plotly 绘制 Pandas 数据

3. IPython 魔术命令

4. Jupyter 中的格式编排

5. Jupyter 快捷键

6. 在 Jupyter(或 IPython)中使一个单元同时有多个输出

7. 为 Jupyter Notebook 即时创建幻灯片

1. Pandas Profiling

该工具效果明显。下图展示了调用 df.profile_report() 这一简单方法的结果:

使用该工具只需安装和导入 Pandas Profiling 包。

本文不再详述这一工具,如欲了解更多,请阅读:

https://towardsdatascience.com/exploring-your-data-with-just-1-line-of-python-4b35ce21a82d

2. 使用 Cufflinks 和 Plotly 绘制 Pandas 数据

「经验丰富的」数据科学家或数据分析师大多对 matplotlib 和 pandas 很熟悉。也就是说,你只需调用 .plot() 方法,即可快速绘制简单的 pd.DataFrame 或 pd.Series:

有点无聊?

这已经很好了,不过是否可以绘制一个交互式、可缩放、可扩展的全景图呢?是时候让 Cufflinks* *出马了!(Cufflinks 基于 Plotly 做了进一步的包装。)

在环境中安装 Cufflinks,只需在终端中运行! pip install cufflinks --upgrade 即可。查看下图:

效果好多了!

注意,上图唯一改变的是 Cufflinks cf.go_offline() 的导入和设置,它将 .plot() 方法变为 .iplot()。

其他方法如 .scatter_matrix() 也可以提供非常棒的可视化结果:

需要做大量数据可视化工作的朋友,可以阅读 Cufflinks 和 Plotly 的文档,发现更多方法。

这对于更复杂的函数非常有用。

%store:在 notebook 之间传递变量

这个命令也很酷。假设你花了一些时间清洗 notebook 中的数据,现在你想在另一个 notebook 中测试一些功能,那么你是在同一个 notebook 中实现该功能,还是保存数据并在另一个 notebook 中加载数据呢?使用%store 命令后,这些操作都不需要!该命令将存储变量,你可以在其他任意 notebook 中检索该变量:

在编辑模式内:

选择多个单元格:

  • Shift + Down 和 Shift + Up:选中下方或上方的单元格。

  • Shift + M:合并选中单元格。

  • 注意,选中多个单元格后,你可以批量执行删除/复制/剪切/粘贴/运行操作。

    6. 在 Jupyter(或 IPython)中使一个单元同时有多个输出

    想展示 pandas DataFrame 的 .head() 和 .tail(),但由于创建运行 .tail() 方法的额外代码单元过于麻烦而不得不中途放弃,你是否有过这样的经历?现在不用怕了,你可以使用以下代码行展示你想展示的输出:

    from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interactivity = "all"

    下图展现了多个输出的结果: